HEAD
Second Semester- M.E./M.Tech (Artificial Intelligence & Data Science)
S.No. | Subject Code | Subject Name | Periods per week | Credits | Maximum Marks (Theory Slot) | Maximum Marks (Practical Slot) | Total Marks | |||||
End Sem. Exam. | Tests (Two) | Assign ments /Quiz | End Sem. Practical /Viva | Practical Record/ Assignm ent/Quiz /Present ation | ||||||||
L | T | P | ||||||||||
1. | MTAD 201 | Soft Computing | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
2. | MTAD 202 | Computational intelligence | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
3. | MTAD 203 | Big Data | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
4. | MTAD 204 | Natural Language Processing | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
5. | MTAD 205 | Elective II | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
6. | MTAD 206 | Lab-III | - | - | 6 | 3 | - | - | - | 90 | 60 | 150 |
7. | MTAD 207 | Lab-IV | - | - | 6 | 3 | - | - | - | 90 | 60 | 150 |
Total | 15 | 5 | 12 | 26 | 350 | 100 | 50 | 180 | 120 | 800 |
L: Lecture - T: Tutorial - P: Practical
Elective-II:
Reinforcement Learning
Recommender System
Research Methodology and IPR
Deep Learning
Second Semester- M.E./M.Tech (Artificial Intelligence & Data Science)
S.No. | Subject Code | Subject Name | Periods per week | Credits | Maximum Marks (Theory Slot) | Maximum Marks (Practical Slot) | Total Marks | |||||
End Sem. Exam. | Tests (Two) | Assign ments /Quiz | End Sem. Practical /Viva | Practical Record/ Assignm ent/Quiz /Present ation | ||||||||
L | T | P | ||||||||||
1. | MTAD 201 | Soft Computing | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
2. | MTAD 202 | Computational intelligence | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
3. | MTAD 203 | Big Data | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
4. | MTAD 204 | Natural Language Processing | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
5. | MTAD 205 | Elective II | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
6. | MTAD 206 | Lab-III | - | - | 6 | 3 | - | - | - | 90 | 60 | 150 |
7. | MTAD 207 | Lab-IV | - | - | 6 | 3 | - | - | - | 90 | 60 | 150 |
Total | 15 | 5 | 12 | 26 | 350 | 100 | 50 | 180 | 120 | 800 |
L: Lecture - T: Tutorial - P: Practical
Elective-II:
Reinforcement Learning
Recommender System
Research Methodology and IPR
Deep Learning