<<<<<<< HEAD rgpv scheme MTech Grading System 1st Semester Microsoft Word - SCHEME OF DATA SCIENCE _CS_

image

RajivGandhiProudyogikiVishwavidyalaya,Bhopal(M.P.)

Scheme ofExamination

First Semester-M.E./M.Tech. Computer Science and Engineering (Data Science) (w.e.f 2022-23)

S.No.

Subject Code

SubjectName

Periodsper week

Credits

Maximum Marks(Theory Slot)

Maximum Marks(Practical Slot)

Total Marks

End Sem. Exam.

Tests (Two)

Assign ments/ Quiz

End Sem.Prac tical/Viva

Practical Record/ assignm ent/Quiz

/Present

ation


L


T


P

1.

MTCD 101

Computational Linear Algebra

3

1

-

4

70

20

10

-

-

100

2.

MTCD 102

Advanced data

structures and Algorithm

3

1

-

4

70

20

10

-

-

100

3.

MTCD

103

Machine

Learning

3

1

-

4

70

20

10

-

-

100

4.

MTCD

104

Data Science

3

1

-

4

70

20

10

-

-

100

5.

MTCD

105

Elective I

3

1

-

4

70

20

10

-

-

100

6.

MTCD

106

Lab-1

(102 and 103)

-

-

6

6

-

-

-

90

60

150

7.

MTCD

107

Lab-2

(104 and Elective I)

-

-

6

6

-

-

-

90

60

150




15

5

12

32

350

100

50

180

120

800



L:Lecture- T:Tutorial- P:Practical

Elective 1: (A) Big Data (B) Data Preparation and Analysis (C) Information Retrieval (D) Data Warehousing and Data Mining

======= rgpv scheme MTech Grading System 1st Semester Microsoft Word - SCHEME OF DATA SCIENCE _CS_

image

RajivGandhiProudyogikiVishwavidyalaya,Bhopal(M.P.)

Scheme ofExamination

First Semester-M.E./M.Tech. Computer Science and Engineering (Data Science) (w.e.f 2022-23)

S.No.

Subject Code

SubjectName

Periodsper week

Credits

Maximum Marks(Theory Slot)

Maximum Marks(Practical Slot)

Total Marks

End Sem. Exam.

Tests (Two)

Assign ments/ Quiz

End Sem.Prac tical/Viva

Practical Record/ assignm ent/Quiz

/Present

ation


L


T


P

1.

MTCD 101

Computational Linear Algebra

3

1

-

4

70

20

10

-

-

100

2.

MTCD 102

Advanced data

structures and Algorithm

3

1

-

4

70

20

10

-

-

100

3.

MTCD

103

Machine

Learning

3

1

-

4

70

20

10

-

-

100

4.

MTCD

104

Data Science

3

1

-

4

70

20

10

-

-

100

5.

MTCD

105

Elective I

3

1

-

4

70

20

10

-

-

100

6.

MTCD

106

Lab-1

(102 and 103)

-

-

6

6

-

-

-

90

60

150

7.

MTCD

107

Lab-2

(104 and Elective I)

-

-

6

6

-

-

-

90

60

150




15

5

12

32

350

100

50

180

120

800



L:Lecture- T:Tutorial- P:Practical

Elective 1: (A) Big Data (B) Data Preparation and Analysis (C) Information Retrieval (D) Data Warehousing and Data Mining

>>>>>>> html