HEAD
First Semester-M.E./M.Tech. Computer Science and Engineering (Data Science) (w.e.f 2022-23)
S.No. | Subject Code | SubjectName | Periodsper week | Credits | Maximum Marks(Theory Slot) | Maximum Marks(Practical Slot) | Total Marks | |||||
End Sem. Exam. | Tests (Two) | Assign ments/ Quiz | End Sem.Prac tical/Viva | Practical Record/ assignm ent/Quiz /Present ation | ||||||||
L | T | P | ||||||||||
1. | MTCD 101 | Computational Linear Algebra | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
2. | MTCD 102 | Advanced data structures and Algorithm | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
3. | MTCD 103 | Machine Learning | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
4. | MTCD 104 | Data Science | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
5. | MTCD 105 | Elective I | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
6. | MTCD 106 | Lab-1 (102 and 103) | - | - | 6 | 6 | - | - | - | 90 | 60 | 150 |
7. | MTCD 107 | Lab-2 (104 and Elective I) | - | - | 6 | 6 | - | - | - | 90 | 60 | 150 |
15 | 5 | 12 | 32 | 350 | 100 | 50 | 180 | 120 | 800 |
L:Lecture- T:Tutorial- P:Practical
Elective 1: (A) Big Data (B) Data Preparation and Analysis (C) Information Retrieval (D) Data Warehousing and Data Mining
=======First Semester-M.E./M.Tech. Computer Science and Engineering (Data Science) (w.e.f 2022-23)
S.No. | Subject Code | SubjectName | Periodsper week | Credits | Maximum Marks(Theory Slot) | Maximum Marks(Practical Slot) | Total Marks | |||||
End Sem. Exam. | Tests (Two) | Assign ments/ Quiz | End Sem.Prac tical/Viva | Practical Record/ assignm ent/Quiz /Present ation | ||||||||
L | T | P | ||||||||||
1. | MTCD 101 | Computational Linear Algebra | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
2. | MTCD 102 | Advanced data structures and Algorithm | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
3. | MTCD 103 | Machine Learning | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
4. | MTCD 104 | Data Science | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
5. | MTCD 105 | Elective I | 3 | 1 | - | 4 | 70 | 20 | 10 | - | - | 100 |
6. | MTCD 106 | Lab-1 (102 and 103) | - | - | 6 | 6 | - | - | - | 90 | 60 | 150 |
7. | MTCD 107 | Lab-2 (104 and Elective I) | - | - | 6 | 6 | - | - | - | 90 | 60 | 150 |
15 | 5 | 12 | 32 | 350 | 100 | 50 | 180 | 120 | 800 |
L:Lecture- T:Tutorial- P:Practical
Elective 1: (A) Big Data (B) Data Preparation and Analysis (C) Information Retrieval (D) Data Warehousing and Data Mining
>>>>>>> html